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of their hadronization properties, In principleJ this would allow us to 

separate the problem of the size of the corrections to the quark~quark 

scattering cross-section from the problem of the definition of the gluon 

distribution beyond the leading order. It also dramatically reduces 

the number of diagrams which we have to calculate. The radiative cor-

rections to this process are interesting for several reasons. The 

radiative corrections to the Drell-Yan process have been found to be 

large at present energieJ 51 . This result shifts the burden of proof; 

the parton modeller is now obliged to show that higher order eorredions 

are small if be wishes to use the lowest order parton formula. One 

hadron inclusive hadron-hadron scattering is also interesting because 

unlil<e the processes previously considered it involves more than one 

large scale which characterizes the hard scattering. By calculating the 

higher order corrections we ean determine which choice of scale minimizes 

the higher order corrections. 

Our operating procedure is as follows. Following refs. 5, 6 we define 

in section 2 quark distribution functions beyond the leading order in terms 

of F' 
2

, the structure function of deep inelastic sea ttering. We define 

quark fragmentation functions beyond the leading order in terms of the 

+ -
transverse part of one particle inclusive e e annihilation. Thus armed 

w:i.th these definitions the problems of analyzing the finite corrections to 

the one hadron inclusive cross section is well posed (apart from the de-

finition of the gluon distribution function which we consider later). In 

seetion 3 we make use of this formalism in the analysis of one hadron in-

elusive hadron-hadron scattering. The actual perturbation calculation is 

discussed :in section M(elastic graphs) and section 4B(inelastic graphs). In 
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sections 5 and 6, we display the result of our calculations and discuss 

its consequences, Certain details of the calculation are given in the 

appendices. 

2, FORMALISM 

I th ' 1' t d l[ 7 ] th ' J ' ' n e slmp e par on mo .e, e lnc.uslve cross sectlon for 

one hadron production at large transverse momentum 

is given by the formula[ S] 

3 
i,j,k 

dx 
1 

(1) 

This equation, illustrated in , 1, describes the production of a 

hadron at 
I-I l 

large transverse momentwn in terms of distribution functions 

(X ) 
' 1 

O~L 

of the type of parton inside the hadron H1 H3 
( 

and the 

fragmentation function 
ok 

H 
3 

in the decay products of the 

giving the distribution of a hadron 

type of part on. The indices 

i,j,k run over gluons (G) and f flavors of quarks and antiquarks 

(l ... 2f). The hadronic cross~section is thus expressed in terms 

of the rescaled parton cross~sections for all the combinations of 

incoming and outgoing partons, For example in the Born approximation 



5 

to the hard scattering cross-section,the contributing graphs are 

given in Fig. 2, 

The calculation of the parton cross-sections beyond the leading 

order in as yields large logarithms associated with mass singULarit1Bs. 

These large logarithmsj which at first sight appear to destroy the 

convergence of the perturbation series, are universal properties of 

the parton legs independent of the particular process and hence can 

be factored out of the parton cross-section anQ_ into the distribution 

function~] A~ter factorization of the mass-singularities, no small 

mass scales remain in the parton cross-section. The strength of the 

interaction is therefore controlled by the running coupling constant 

evaluated at a large scale associated with the hard interaction 

which we denote by Q2. The asymptotic freedom of the theory assures 

us that, at infinite energy, the process is dominated by the Born 

approxiamtion. 

At sub-asymptotic energies a calculation beyond the leading 

logarithmic approximation can supply answers to the following 

questions: 

1. Which corp.bination of the hadronic variables is the best choice 

for the scale Q2, controlling the fall-off of the running coupling 

constant in the hadronic interaction? The best choice is deemed to be 

that choice which minimizes the correction term. Such a choice would 

presumably lead to a more rapidly ,,,c,mrergent perturbation series. 
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2. Whlch comblnation of the hadronlc variables is the best choice 

for the factorizatlon scale NF (effectlvely the scale size at which 

the parton distrlbution and decay functions are evaluated?) 

3. Are the corrections large or small for all choices of 

and Nf? 

It ls clear from Eq. (1) that, even in the Born approximatlon, 

we are dealing with a matrix problem of some complexity. In the next 

order the number of graphs to be evaluated escalates,and each graph 

contributes to at least two different inclusive cross-sections both 

of which have to be calculated. 

The present investigation limits itself to a (gauge invariant) 

subset of these graphs. We consider only the radiative corrections 

to the parton process 

q. + q. -+ qk 
l J 

+ anything (2) 

(that is collisions of two quarks of distinct flavors i f j, where 

or k = j). Whilst it is in principle possible to 

choose a klnematic configuration in which this subprocess gives the 

domlnant contribution because of the harder hadronization properties 

of valence quarks, our maln interest in the present paper is the 

investigation of the magnitude of the corrections. 
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Expediency is not the only rationale for only considering 

quark~· quark scattering graphs. Experience from the Drell-Yan process 

indicates that large correc:tions arise because of the emission of 

soft radiation from a subprocess occurring in the Born cross~section. 

Moreover, as will be explained in more detail below, our relative 

ignorance of the gluon distribution vitiates any attempt to interpret 

the results of a calculation involving initial gluons. 

To illustrate the factorization algorithm and to our 

of the distribution and fragmentation functions beyond the 

leading order, we turn now to deep inelastic scattering. The process 

* y ( q) + Hi(P) -+ anything 

is described by a series of structure functions F.(x,t)J 
l 

X 
2 I ql , t 

2 2 
R,n Q IJJ • 

where 

The Bjorken scaling variable is denoted by x and ]J is an arbitrary 

scale of mass, In the simple parton model, the structure function 

F2 is given by, 

i=L .2f 

H 
2 

ei [!7(x) 
oi 

where the sum runs over all flavors of quarks and antiquarks. 

(3) 



8 

When corrections of order as are included, the naive parton 

model formula is modified as follows 

"1 
__L 

dy dz o(zy ~ x) 

X 2 l 
ei j=c;,L,2f 

as ] _O(z ~ 1) + tP. ,(z) +a f. ,(z) y) 
J 1.J s lJ oj 

where the P, .( z) are th© Al tarelli~Parisi functions[ 9] , 
lJ 

( 4) 

Our definition of the parton densities beyond the leading order 

:is the requirement that in terms of the "renormalized 11 scale dependent 
H 

part on densities ( x, t), the form of Eq, ( J) is preserved with 
j 

no corrections in order a s 

2 e, 
i=L ,2f 1 

H 
( x,t) ( 5 ) 

Equation (5) implies that, in this order in perturbation theory, the 

relationship between bare a~nd n renormalized 11 quark densities is given 

by (i=(L .. 2f)) 

H I-I 
( x,t) 

oi 

+ \as 
2'rr 

u I 
( y) ( 

oG ) 
(6) 
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where for clarity we have separated the contributions of the quarks 

and gluons. 

Defining the moments of the quark distribution functions 

(n) 
f)= (t) 

i 
= fl - dx 

0 

xn-l f!l(x,t) 
i 

( 7) 

we may write the generali ofEfq,, (6) which contains all terms 

in the expansion in (at) (i l .. 2f). s 

f!f (t) = (6 •• +a f~r:))T exp f dcx J /!7 
(n) [ aJt) y~~)~j (n) 

i j,k=G,l..2f lJ s lJ as(o) S(a) ok 

In eq. (8), y is the lowest order expansion of the standard 

( 8) 

anomalous dimensions (moments of the fuctions P). Thus the quark 

distribution function is completely specified. 

For our limited purposes the only function which we need to 

know is the one relevant for 11 non~singlet 11 quark distributions. We 

choose to regulate the mass singularities in tl1e relevant diagrams by 

continuing the number of space-time dimensions n 

notation, the function f (see eq. 6) qq 

[ 10,11] In this 

is given by: 

2 
1 + z 

- z £n z 

+J+2Z- 9 2 {a (l ~ (- + 2!.. )o ( 1 - z ) , + ~ P c z ) - - + y - tn4rr 
2 3 J 2'IT qq E E 

( 9) 



10 

where 

In these equations, CF is the quadratic Casimir operator for the 

fundamental (quark) representation of the SU(N) color group. For 

4 N
2 ~ 1 the specific case of SU(3), CF ~ J (in general, CF = 2N ). 

_ 4 - n The expansion factor of the dimensional regularization is s - 2 

and YE is Euler 1 s constant. The distributions denoted by the plus 

* subscript are discussed in Appendix A. 

The definition of fragmentation functions beyond the leading 

order follows an entirely analogous procedure[ 6
]. We define the fragmen-

tnl.:ion functions beyond the leading order in terms of the transverse 

+ -part of one hadron inclusive e e annihilation. 

In the one photon approximation, (neglecting for simplicity 

effects due to weak interactions), the cross-section differential in 

angle and energy for the reaction (e+e- + H +all) with unpolarized 

beams can be written in the general form: 

H 3 2 H 3 2 H a (z,cos8,t) = S (1 +cos 8)a T(z,t) + i<l- cos 8)a1(z,t) (11) 

* Using dimensional regularization of the mass singularities, we obtai~ 

a 

2
s tP (X) +a f ( Z) 
TI qq S qq 

The factor ~2E comes from taking g~2 
n t 4. Expanding about s = 0 and using 

+ terms regular as E + 0. 

as the QCD coupling constant when 
t=~n(Q2j~2)leads to eq.(9)above. 
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In the center of mass frame, e is the angle of the hadron H with 

respect to the beam direction and z is the energy of the hadron H 

(expressed as a fraction of the beam energy). In terms of P and q, 

(the hadron and current momenta)J we have: 

2 Q2 t q := ' ' 

After integration over cos e we obtain: 

where 

In the naive parton model oT is given by: 

f 2 
3 a L e 

0 a=l a 

( 12) 

( 13 ) 

+ - + -
is the point like cross-section for e e ~ y y . In Eq. (13) the 

factor 3 is from color and the index a runs over the various flavors 

of quarks whose charge (in units of the proton eharge) is given bye . 
a 

.. ql (z) is the number density of had'orw c~ 
oqa 

a fraction z of the enerr;y of the quark q t a. 

H which carry 
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Calculating beyond the leading order,the simple parton model 

formula is modified as follows 

x lo .. o( 
l Jl 

ei ~j(y) 
i=L .2f j==C, .. 2f 

z -1 ) + a2~ P .. (! )t + ex d . , (!) J 
y II Jl y S Jl y ( 1~ ) 

As before we impose the condition that in terms of the renormalized 

scale dependent parton distributions,the form of Eq. (lJ) is unchanged 

2fiiiH Ja e . ';21. ( z , t ) 
0 i=L .2f l l 

For our purposes all that we require is the quantity 

a d ( z) s qq 

( 15) 

In order to extract the quark~quark scattering cross-section beyond 

the leading order we also need information on the definition of the 

gluon distribution beyond the leading order. In the context of the 

parton model, we must impose the condition of total momentum 

conservation 

/ctx x£l(x,t) 
i=G,l· · ·2f l 

1 
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This in turn leads to the following constraints in order as 

on the functions f.' lJ 

._ jctx x [ri/x)] ;;;; 0 ( j :::: 1"' •2f) 
1-G,l .. 2f o . 

(17) 

._ j[1
ctx x [r10(x)] :::: 0 (18) 

l-G,l. .2f o 

These conditions on the second moment are not sufficient to completely 

determine the gluon distribution function beyond the leading order. 

In our calculation, we will need to know fG . This is true 
' q 

(as will be explained in Section 3) even though we are neglecting 

initial and fragmenting gluons by considering process (2) alone. A 

complete definition of fGq cannot be obtained from one-loop 

calculations of current induced processes because there is no direct 

photon-gluon coupling. Thus, apart from the constraint of eq. 17, we 

. * have an uncertainty in our quark-quark scattering calculat1on. 

To determine how sensitive our final results are to the choice of 

fGq' we tried several different forms. One possible choice is: 

a fG ( z) s q 

This ambiguity would not be present in two-particle inclusive 

hadron-hadron scattering if we require that the two hadrons each 

come from the two fragmenting quarks produced at large pT, 
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where 

(20) 

This particular form is an extremal choice, since in practice we would 

not expect to encounter 6( 1 - z) terms in any process measuring 

the off~diagonal fGq(z), 

Another possibility is: 

z < 1 ( 21) 

Note that eq. 17 is automatically satisfied. This is reminiscent of 

the procedure for obtaining PGq(z) 

the probabilistic interpretation of 

from Pqq(z) which relies on 

P (z) for z < 1, However, qq 

it is important to emphasize that one cannot interpret f ( z) qq 

as a probability (e.g, f (z) is not positive definite for z < 1), qq 

Using eq. 9, we see that fGq(z) defined by eq. 21 contains 

singularities at z = 0 and z = 1. As a third possible choice 

which contrasts with eqs, 19 and 21, we choose: 

a fG (z) s q 
( 22) 

In section 5, we will show how sensitive our final results are to the 

choice of 
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J, ONE HADRON INCLUSIVE HADRON-HADRON SCATTERING 

In this section we display the implications of the factorization 

theorem for one hadron inclusive scattering. This allows us to 

separate the pieces of the perturbative calculation which ultimately 

are absorbed into the distribution and fragmentation functions from 

the genuine higher order corrections. We choose to express the invariant 

hadronic cross section in terms of the variables S, V, and W defined 

below: 

w -U 
:::: s + ""'f (2J) 

v l + 
T 

:::: s ( 24) 

where Similarly, 

we define corresponding kinematical variables s, v, and w for the 

parton process. We will always use lower case letters for parton 

variables and upper case letters for hadron variables. Using 

p ::: 
1 

* Note that v :::: 

relations for V and W. 

and w 

. * we obta1n : 

( 25) 

with analogous 
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In terms of these variables, we may write the hndronic cross section: 

1 d Gq 
x v ~v ( s, v )o( 1 - w) (28) 

where Nf is the scale at which we measure the distribution and 

fragmentation functions, and ~ is the correction term* which we 

compute in this paper. The expressions for the quark-quark (fig. 2a) 

and the quark-gluon (fig. 2b, c, d) cross sections :in the Born approxi-­

tion for arbitrary N and E are given below: 

E 

d qq 
~v ( s, v) [;~t~-v)] [1 ( 29) 

* Note that::)( ( s, v, w) also depends on Nf. 
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2 2E( ) . E 
1Ta ]J 1 - E ( 4 2 ) r J 

s · 1T]J 11 + v
2 - d 1 - v )

2 
:3v01- v) . 

(30) 

A word of explanation is needed for the presence of the second term 

in eq. 28 which contains the gluon distribution function ~G' As 

previously discussed, we are neglecting the possibility of initial 

gluons or gluons which fragment into the observed hadron. However, 

when one calculates in perturbation theory, one of the leading 

logarithmic pieces in the quark-quark scattering diagram (say, 

qi + + qk + X where i = k t j ) comes from the region where 

a gluon emitted from q. is on its mass shell. The gluon (G) 
J 

then participates in the hard scattering: G + qi + G 1 + qk. 

The resulting singularity is a contribution to the gluon distribution 

function beyond the leading order. l-Ienee, the extraction of 

the quark-quark scattering correction term :1{ requires 

knowledge of the gluon distribution function in order a 
s 

Note that to the order in which we work q. cannot emit an 
l 

on-shell gluon (which subsequently participates in a hard 

scattering), because we require qk to be emitted at large pT. 

We next propose to use those fuhctions' fF' and f!j) as measured in 

+ -
deep inelastic scattering and one-hadron inclusive e e annihilation 

respectively. That is, we substitute into eq. 28 the following 

expressions : 
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/E( X ,Nf) "' f 1 
dy [o( 1 - !_) + a

2
1TS t p ( !_) + a f ( !_ )] /Jt.. ( y) ( 31) 

l X y Y qq y S qq y Ol 

9Jl (x ~vf) = j 1 
dy [o(1- !.) +as t P (~~)+ad (!)J(j}J (y) (32) 

k ' y y 21T q q y s q q y ok 
X 

where t = ~n(M2;~2 ) (cf. eqs. 4 and 14). Note that in neglecting 

incoming and fragmenting gluons, we have set ~G = ;])oG = 0. In 

addition 9[ is non-zero at order a
8

: 

( 33) 

In order to economize our notation, we will write: 

H ( X ) :: tP (X) + 21Tf (X) qq qq qq ( 34) 

( 35) 

H ( X ) :: tP ( X ) + 21T d ( X ) qq qq qq ( 36) 

Inserting eqs.Jl, 3~ and 33~into eq. 28 yields: 
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~ 1 clOqq 
x { v · (s,v)o(l- w) 

qq 
+ ~1- H ( 1-v ) ddo ( ( 1

1
-v )s, vw) 

qq v -vw 

1 ~ doqq vw ll + H 1-v+vw - s 1-v+vw qq ( ) dv ( ' 1-v+vw) ( 37) 

In order to calculate the desired correction term :J{( s, v, w), we 

compute the Fe;ynman diagrams displayed in figures 3 and 4. The result 

can be written in terms of the variables for the perburbation theory 

diagrams, 

a 
s 

where 21T k( s, v, w) 

1 do 
v dvdw 

1 doqq v dv ( s , v )6 ( 1 - w) 

a 
+ 2~ 8 ( 1 - w )k( s, v, w) 

repregents the total order a 3 
s 

( 38) 

contribution. 

The hadronic cross section is then obtained by convoluting eq. 38 

with the bare distribution and fragmentation functions: 
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SV dVdW 
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( 39) 

At this point, we note that both equations 37 and 39 contain terms 

which diverge as c + 0. However, the statement of factorization 

of mass singularities means that~(s)v,w) will be finite as c -? 0. 

To obtain an equation for :J{, we simply equate equations 37 and 39. 

The result is: 

a '2Jf(s , v , w ) 
s 

1 (l.(Jqq 
= k(s,v,w) ~- H (w) --d (ws,v) . v qq v 

1 ( 1 - v) <h qq 
~ vw Hqq 1 ~ vw -crv- ( ( 

1 
Gq 

vw HGq( ~(( 
dv 

l H (l v + vw) qq 

1 - v )s,vw) 
~vw 

s 'vw) 

doqq 
dv ( s' 

vw 
vw) ( 40) 

We have calculated k(s,v,w) and as expected, ~ is finite as 

E + 0. We discuss the computation of k(s,v,w) in section 4 and 

give the explicit result for in section 5. It is convenient to 

state the final formula for the one-hadron inclusive cross section 

(i.e. eq. 28) by eliminating the variables x1 and x2 in favor of 

v and w (using eqs. 25 and 26). The result is: 
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(1-V 1-

L 
1 

d3 1 sl dx
3 t XJ dv dw 0 

E -= -
3 d3P TIS 1-V+V\V 2 - v w 

3 x3 
x3 x

3
v 

(41) 

X 

where 

Note that we have now dropped the term with the gluon distribution 

function. In addition, a had been replaced by the running coupling 
s 

constant evaluated at a scale to be determined 

( 44 and the discussion which follows). see eq. 
4. CALCULATION OF THE ORDER a~ GONTRIRUTION 

A. Elastic Graphs 

In this section we present ou:r results on the virtual gluon cor-

rections to the basic quark-quark scattering cross-section (see Fig. 3). 

Our caluclations are performed in the Feynman gauge and as before,di-

mensional regularization is used to control both the infrared and ultra-

violet singularities. The ultraviolet singularities appear as poles at 

E = 0 in the momentum integrations, whereas the infrared and mass 

singularities appear as poles at E = 0 in the Feynman parameter 

integrations. 

The only subtlety in this procedure is in the evaluation of the 
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wave function renormalizatton on external on-shell quark liPes. We 

follow the procedure of subtracting the ultraviolet pole before 

taking the on shell-limit. These graphs then give a contribution 

containingpoEs in s equal to minus the quantity subtracted. 
[ 12] 

Our renormalization scheme is the so called ~ scheme which 

requires the subtraction of all the ultraviolet poles together 

with their attendant Euler constant and 9,n4rr. We have chosen this 

prescription scheme because it leads to small corrections and 

hence presumably a well ordered perturbation series in both deep 

inelastic scatterinJi2~3~nd in the e+e- annihilation total cross­

sectionLL4l 'Iles.e processes are our major source of information about 

the scale of the strong coupling constant A. 

The results of our calculation are shown in Table 1. The 

total contribution of the elastic graphs may be written as: 

rra; ( Q
2 )i 2CF 

Nsf( l -E) [
4rr/ ]s [l + v

2 
- s( 1_- v )

2
] 

sv( l - v ) ( 1 v )2 

x) as(Q2)(4rrJ}·)sr(l 
( 1 - ~~ -S-. (1 

where the function A(v) is given by 

( 42) 
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A( V) CF [ l + ~ ( 3 ~ 4 ~ v - 2 £n( 1 - v) + 16 + 
2

TT 

2 
+ 2 9,n (1- v)- 2(3- 4 9,n v) 9,n(l- v) 

+ 2 c : ::)e + tn
2 

(1 ~ v) + w
2

( 1 - v) 

+ 2 £n(l - v) - 2 £n v)l 
1 + v J 

+ 2 
v 

1 - v 
v 

2 

where t = - s( 1 - v), In eq, L,2, we have introduced the running 

coupling constant evaluated at an arbitrary scale Q2 : 

(43) 

( 44) 

For the particular set of diagrams which we have considered, the 

choice Q2 
= ~ t is the most suitable (causing the last term in eq. 43 



to ). This :Ls a cmwequence of the that the lowest 

order which we aTe all have a t~,charmel pole, This 

would not be true if a more set of were considered. 

D LJ, 

There are c which contribute to do to 

order 3 are shown in ~. When the total amplitude is 

one ter:ms, It proves co:nven::Lent to 

choose a frame which to the space integration. 

We chose the Gottf:r:Led~-Jaclmon frame 115 the gluon and the 

unobserved have no net three·~rnomentum. The 15 terms were then 

added; aLL c * tions were performed using 11ACSYMA . 

Next, the integral over space in n + ~- dimensions was computed. 

All the integrals encountered were either straightforward or 

expressible in terms of one basic integral. We discuss this integral 

and details of the n·~dimensional three body phase space in .Appendix B. 
d inel 

The final result for .a Jong anct. therefcre we do not 

it here. We then have to add this result to the elastic 

cross sect:ion. Before we can do th:is we must expose the mass 

singularities of which occur at w ;;;; L To do th:is, we 

proceed as follows. Schematically, we have found that: 

inel 
do = A+ B (l - w)-1-E + C(l - w)-l-2E ( 45) 

MACSYMA was developed by the :W~athlab Group of the MIT Laboratory 
for Computer Science, 
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where A, B, and C are complicated functions of v and w but 

are regular at w = 1 and contain simple poles at s ~ 0. We now 

use the identity: 

( )-1-s 1 ·~ w 1 ~ s (9-n( 1 - w )1 - !. o( 1 - w) + o( s 2 ) ( 46) 
1 - w s + 

(1 - w) 
+ 

Inserting eq, 46 into eq. 45, we find that we can write the cross 

section in the following form: 

doinel ( A1 A2 ) 
~~- = + 7 + A

3 
a( 1 - w) 

dvdw "' 

+ (:1 + B2) .,..,...._1___,,...,. 
c. (1-w)+ 

+ C ( 9-n( 1 - w) ) 
1 1 w + 

(47) 

We can now add this expression to the elastic cross section (which 

is proportional to o( 1 ~ w)). One finds immediately that the terms 

proportional to -2 s cancel as required. Therefore, the function 

k( s 'v' w) defined by eq. 38 contains terms proportional to -1 
€ 

and terms which are finite as E + 0. Inserting this resulting 

expression into eq. 40, we have verified that the terms proportional 

to E-l cancel and :J{( s, v, w) is finite as E + 0. 

5. THE QUARK-QUARK SCATTERING CORRECTION TERM 

We now write out explicitly OUT result for:/(( s, v, w). At this 

point, we have not chosen a particular form for fGq(x). We also 

leave unspecified the choice of the factorization scale N(, Since 

:/(is regular as E + 0. we may set s = 0 everywhere. The result is: 
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:/{(s,v,w) + c (R,n( 1 ~ w )) ) 
3 1 ~ w 

+ 

+ c
5 
~n v + c6 ~n(1 ~ vw) + c

7 
~n(l v + vw) 

~n( 1- v + vw) 
+ c12 1 - w 

(48) 

where the coefficients c. (i = 1,2,···14) are functions of v and 
l 

w and are given in Appendix C. For convenience, we have defined: 

(49) 

The complexity of the above expression prohibits us from making 

any quick observations as to the size of ,:/{. We proeeeded as 

follows: Inserting the expression for ~(with N = 3, c = 4 
F 3 and 
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* f ::: 4) into eq, 41, we compared the'hadronic cross section 

thus obtained to that predicted by using the Born parton cross sect:i.on 

alone. We denote this ratio by f/l. To simplify the ealculation 

we work at 8 90° for the one-hadron inclus:i. ve production, em 

which corresponds to the observation of the hadron at P}svw( 1-V), 

where V and W satisfy V(l + W) = 1. ** We used scale-breaking 

valence quark distribution functions and scale-breaking fragmentation 

functions given by Feynman,Field, and Fox[ 21 for [J'(xJ-,J12 ) and !l)(x,~/). We 

still have two uncertainties to deal with: the value of M
2 and 

the functional form for fGq' 

We first fixed all our parameters and tried three forms for fGq 

given by eqs. 19, 21, and 22. We observed that eqs. 19 and 22 gave 

almost identical results for f/l. When we used fG (x) = f (1 - x) q qq 

( x f 0), we fmmd that the size of the correction term decreased 

somewhat as shown in Fig. 5. Thus, for the remaining calculations, 

we settled on this latter choice for fG . Note that our results are 
q 

only mildly sensitive to this particular choice. 

In order to dedde on the optimal choice for M2 
' 

we looked at 

four possibilities: M2 - s, J = - t, M2 = tu/s and M2 :::: 2stu/ 

( s 2 

* 

** 

+ t2 + 
2 u ), where s, t, and u are part on *** variables. 

Note that the limits of the w integration do not go from 0 to 

As a result, the 11 plus" distributions must be modified as explained 

in Appendix A (see eqs. A4 and A5). 

L 

The scale of the running coupling constant used here is 1\ = 400 MeV. 

*** Note that t and u are related to v and w by t = -s( 1-v) and 
u ::: - svw. 
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In fig. 5, we plot the results of two of these choices (at IS= 27 GeV ). 

The smallest result for~occurs for M2 = tu/s (which is equal to the 

transverse momentum squared of the outgoing quark which fragments into 

the observed hadron). The largest value of~occurs for 

with other choices of M2 * giving intermediate results. 

2 M "" s, 

Even with 

an optimal choice for we see that the QCD corrections (indicated 

by the deviation of ~from 1) are large and positive. As PT 

increases, ~changes little despite the fact that ~ is the ratio 

of two steeply falling cross sections. Note that in the region of 

small pT our calculation is not applicable because we are no longer 

in the perturbative domain. But even away from the kinematic 

boundaries where we would hope to apply QCD perturbation theory, 

we see that the corrections are too large to justify its use. As 

we increase S, the size of the running coupling constant should 

decrease and push down the size of the QCD correction term. A 

comparison of r8 = 27 GeV and r8 = lOOOGeV is shown in Fig. 6. 

Due to the slow logarithmic decrease of the running coupling constant, 

the QCD corrections are still large. Thus, we exreot that even at 

ISABELLE energies, QCD perturbation theory as applied to large pT 

physics will remain suspect. 

One may argue whether a redefinition of the coupling constant 

by changing the value of fl. could reduce the size of the correction 

We find that the hadronic cross section obtained by using the Born 

parton cross section alone varies on the average by 20% by changing 

M2 as above due to the use of scale-breaking distribution functions. 
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term. In fact, the term (85N ~ lOf)/9 which appears in c
1 

(see 

eq. 48 and Appendix 3) accounts for a large portion of the QCD 

correction. This term could be absorbed by a change in 1\ because 

c1 is proportional to the Born cross section. However, such a 

change ln A would destroy the well behaved perturbation expansion 

in deep inelastic scatterinJ 12 • 131 and ha drons } 14) 

We conclude that the large QCD corrections we find at present 

energies cannot be defined away. 

6. CONCLUSIONS 

We have computed the higher order QCD corrections to the 

quark-quark scattering process which contributes to the production 

of hadrons at large pT in hadron-hadron collisions. The mass 

singularities are absorbed into the distribution and fragmentation 

functions which are defined in deep inelastic scattering and semi-

inclusive + -
e e annihilation. The calculation enables us to 

determine whether the perturbation expansion is well behaved and 

consequently whether the lowest order prediction is reliable. As 

· th r 5 ' 16 ' 17 1 f" d th t th t· ln many o, er processes , we ln a , e correc lons 

are large and we are in the position that as is not small enough 

at present energies to give a well ordered perturbation series. 

The complexity of our answer does not allow us to unambiguously 

identify the source of the large correction. Unlike the case of 

Drell-Yan[ 5 1, the large corrections here do not appear to be a 

consequence of the soft radiation. We feel that the large corrections 

in our case are in part due to the fact that the eight vector gluons 

play a large role by giving rise to large color factors in certain 
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graphs, Another source of the large corrections could be that the 

quark-quark Born cross section begins at order hence the number 

of diagrams associated with the first radiative corrections is larger 

than in (electro-weak) current induced processes. We feel that these 

features would persist in a complete calculation in which all 

possible contributing parton processes are taken into account. The 

ultimate conclusion of this paper is not encouraging - the QCD 

perturbation expansion is out of control in another process, 
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The distributions 

f(w )dw 
(1- w)+ 

APPENDIX A 

1 and /~n(l - w)) are defined by: 
(1 - w) \ 1 - w + 

+ 

[ f( w) - f( 1 )] 
1 - w dw (Al) 

"' f\r(w)- f(l)](,Q,nil_-ww)) dw 
0 

(A2) 
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Note that the range of integration here is always assumed to be 

0 ~ w ~ l. However, in eq. ( 41), we see that the w integration 

range is A ~ w ~ 1 where 

a more general distribution 

A = VW/x
3 
v. It is convenient to introduce 

1 
(l _ w) such that for any A< 1, 

A 

f l f(w )dw = 

A (1- w)A f l [ f( w) - f(l )] . dw 
A 1 - w 

(AJ) 

and a similar definition for ( 9vn( 1 - w)). . 
1 - w A 

We find that: 

~-1- - 1 + 9vn(l - A)o(l - w) (1 - w)+- (1 - w)A 

(
9vn(l - w)) 

1 - w + 

(A4) 

This allows us to express :J{(s,v,w) (eq. 48) in terms of these new 

distributions. Integrating eq. (41) from w A to w = 1 is 

then straightforward. Note that we could have accomplished the 

same result by replacing eq. (46) with: 

( )-1-€ 
1 - w 

(A6) 

Finally, we wish to make some technical remarks regarding eq. 

1-v 
( ~0). Consider for example H ( x) where x "'· qq We recall from 

the definition (see eq. 34 )that H (x) contains terms like 
1 

( 
\ qq ( 1 - X) 

and 9vnil_-xx)
4
. We would like to express these distributions in + 



32 

terms of o (1 - w), 1 and ( R,n(l - w) ) because it is the 
(1-w)' 1-w 

+ + 
point w = 1 (the elastic limit) where the soft singularities 

originate. Note that if desired, we may use eqs. A4 andA5 at 

the end to account for A f 0. Using the example just mentioned, 

we evaluate 

{1-vw\ 
\v(l-wYJ: 

1 where x 
1 - v 
- vw . 

1 - vw 
v( 1 - w) + cc;( 1 - w) 

+ 

We may write 

(A7) 

To determine C, integrate both sides of eq. A7 from w = 0 to 

w ; 1. The left hand side can then be evaluated by changing 

variables to x and using eqs. AJ and A4. The result: 

c ( 1-v) ( v ) 
v ,Q,n 1-v (A8) 

Similarly, we may derive other identities which are needed when the 

right hand side of eq. (40) is simplified. As a final example, note 

that 

v(l ~ w) + ~ ,Q,nvo(l - w) 
+ 

(A9) 

That is, one cannot simply factor out the v from the denominator. 

APPENDIX B 

We believe that our treatment of massless three particle 

phase space in n space time dimensions contains some new features 

and may be useful in other contexts so we give a few details of our 

technique in this appendix. The three particle phase space for the 
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may be written as 

Introducing the variable 

write eq. (Bl) as 
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p + p + p + p + k 
1 2 3 4 

n n + 2 + 2 n 
x d k d p 

4 
o ( k ) o ( p 4 )o C P 4k - P 4 - k ) 

where s - 4 - n - 2 

we may 

( B2) 

The 3 particle phase space has factored into two Lorentz 

invariant parts which we may evaluate in any frame. Working in the 

rest system of p
4 

+ k we orient the vectors p1 ,p2 and p
3 

th th so that they lie in the plane of the n and ( n -1 ) components 

of the momentum. Thus we have 
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k 

~ 

2
2 

( 1, · · ·, - cose 2sine 1 , - oose1 ) ( B4) 

where the dots indicate n - 3 lli~specified momentum which with the 

above orientation of p
1

, p
2

, and p
3 

can be trivially integrated 

2 over. Defining t = (p1 - p
3

) and u = s2 - s - t, we introduce 

rescaled variables: 

1 + 
t 

v -s 
( B5) 

_u 
w = 

s + t ( B6) 

Using eqs. BJ and B4, we obtain from eq. B2: 

( B7) 

For definiteness, let us consider a term in the matrix element 

1 
squared of the bremsstrahlung graphs of the form 2 2 

( p1 - k) ( pJ + k) 
We choose: 

(s(l- vw) ) (1, o,~··,o,o, 1) ( B8) 

2/ES 



I - v + 
PJ 

:::: 

2rs; 

where 82 = sv( 1 - w) 
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vw )( 1, 0, ... 0, sin l!J, COSl/J) ' 

and the angle l/J is given by 

l - v cos 31!. 
2 ( l - vw )( 1 - v + vw) 

( B9) 

( BlO) 

Using eq. B7, we find that we have to evaluate an integral of the form 

( Bll) 

Feyrunan parameterizing the denominators, we find after some manipulation, 

J( l/J) 
-1-E:: 

-1T ( 2 l/J ) ( 2 l/J - sin . F -E, -E; 1 -s; cos -2 E ),· ( Bl2) 

where F . th 1 h t . f t. [ lB] .' lS , e usua . ypergeome rlc unc ,lon . Expanding about 

s == 0 we find: 

(Bl3) 

where 

00 k 

L: :2 
k=l 

( Bl4) 

is the dilogarithm. 



J6 

By suitable rotation of axes and partial fractioning, all the 

bremsstrahlung integrals are either straightforward or can be re­

duced into the form of eqo Bllo 
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APPENDIX C 

The coefficients ci, i = 1,2, ••• , 14 are defined in Eq. 48. 

The are given by: 

- l Q,n v - L Q,n ( 1 - v ) 
2 2 

+ 2 J/,n ( 1 - v ) - 2 Jl,nv ) ] 
1+v 

2 
+!/,n (1-v) 

- N 4 Jl,n v - 2 Q,n (1 - v) - 2 Jl,n (1 - v) Jl,n v - n 
[ 

2 2 2 



c4 :;;;: 

)8 

CF 
[ ( l+v2w2 ) 

( 1-v + 1-vw) 
+ (1+w2 )(1+v

2
) 

(1~vw) 2 { )2 w\l~v 

2 2 2 2 
+ [1+(1-v+vw) ][v w +(1-v+vw) ] 

2 
(1-v) (1-v+vw) 

2 2 2 2 2 

l + (l-w)(1+v w )[(1-vw) +v (l~w) ] 
2 

w( 1-vw) ( 1-v) 

2 2 2 2 2 
+ Nv(l-w)(1+v w )[ (1-vw) +v (1-w) ] 

(l-v)
2

(1-vw) 3 

2 
w(1~vw)(1-v) 

+ NV 

2 2 2 2 
(l-vw)(2v w -2v w+2vw+v +1) 

w(l-v) 

2 2 2 2 
2CFv(2v w -2v w+4vw+v +3) 

Nv +-
1-v 
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2 3 
w(1~v) (1-vw) 

6 6 6 5 5 5 6 4 5 4 [4v w ~ 4v w - 8v w + 2v w + 9v w 

4 4 5 3 4 3 3 3 4 2 3 2 + 9v w - 9v w - 19v w - 8v-w + 12v w + 29v-w 

2 2 3 2 2 + 3v w - 9v w - 11v w ~ 4vw + 2v + 2] 

- c 3 3 3 2 2 2 2 
+ 11v3w + 5v2w 

F 
c9 :::: [4v w ~ 21v w + 16v w - vw 

w(1-v) (1-·VW) 

2 
+ 23vw + w - 3v - 3] 

2 2 2 2 
Nv(2v w -5v w+5vw+3v +v+6) 

+ 2 
(1-vw)(l-v) 

CF 4 4 4 3 3 3 4 2 3 2 
clO = [2v w - 2v w + 2v w + v w + 8v w 

w(1-v) (1-vw) 

2 2 2 2 
- 5v w + 6v w - 14vw + v + 1] 

66 65 55 64 [6v w - 12v w - 6v w + 7v w 
2w(l-v (1~v+vw) 



43 33 23 52 42 32 + l7v w + l8v w ~ 2v w· + l5v w ~ 66v w + 8lv w 

22 2 4 3 2 - 30v w - 2vw + l7v w- 56v w + 59v w 

- 28vw + 2w + v3 + 3v2 - 3v - l] 

___ ____:::.___ ___ ~ [2v6w5 - 6v6w4 + 3v5w4 

(l-v) 2(1-vw) 3(1-v+vw) 

4 4 
- v w 

2CF( ll v
2
+7) 

2 (1-v) 

(1+v) 

1-v 

42 32 5 4 3 2 - 27v w + llv w - 4v w + lOv w - 3v w + v w 

4 3 2 - 2vw + 2v - 8v + 9v - 4v + 1] 
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TABLE CAPTIONS 

Table 1: 

We give the expressions which correspond to Fig. 3 (a) - (d). 

S is equal to the Born quark-quark cross section given in eq. 29. 
0 

The sum of all the terms in this table is given in eq. 42. Terms of 

O(c) are neglected. Note that t =- s(l- v). 

TABLE 1 

+ N( 2 
+ 6 2 9-n( -~)) ] 

]J -

(b) s 
0 

as(- 4'ITJJ ) f(l -E) ( ~ f- ~ N) 9-n(-t) + 
2 E [ 

2n t r( 1 - 2c) J J ]J2 
JlN 9 lOf l 

a 2 E [ 4n2 
( ,.,) s -2. ( _ ~) r( 1 - c) ( 2 c - N) L + i 9-n ( 1 - v) - ~')-
~ 0 2'ff t f( l - 2 E) "F 2 E __; 

E 

g. 

( )s as( 4ni)-f(l-E) ( 2C N)[ 4 _i,Q,n 
d o 2'ff - t I' ( l - 2 E) F - 2 - ~2 E 

2(1- ~) 9,n (l ~ v 
l + v 



FIGURE CAPTIONS 

Fig. 1. One-hadron inclusive hadron-hadron scattering in the Darton 

model. 

Fig. 2. Born diagrams for the hard scattering of quarks and gluons. 

The interference between the quark-quark scattering 

Born term and one-loop corrections is displayed. The 

abbreviation w.f. stands for the corrections due to the 

wave function renormalization on the external legs. 

Fig. 4. Gluon bremsstrahlung graphs. 

5. Correction to one-hadron inclusive hadron-hadron 

f!ll is equal to the hadronic cross section including the 

QCD correction term :J{(see eqs. 41 and 48) divided by the 

same cross section with :J{= 0. Scale-breaking distribution 

and f'ragmentntion funetions are used in botb cross sections. 

We take 8 = 90° and IS = 27 GeV. The solid lines 
em 

correspond to tbe choice f (x) = f (1 - x)· the dashed Gq qq . ' 

line corresponds to fGq(x) given by eq. 22. 

Fig. 6. Energy dependence of the QCD correction. 

See caption to Fig. 5. 

fc(x)=f (1-x). q qq 

We take 8 em 



45 

--

i @ 1 
XBL 802-8153 



46 

(c 

(a) 

(b) (c) (d) 

(c 

(e) ( f ) 

Fig, 2 

XBL 802-8154 



47 

(a) 

(b) 

(c) 

(d) 

Fig. 3 

XBL 802-8155 



48 

' 
I • 

XBL 802=8156 



49 

4.0 
= GeV 

3.0 

\ 

LO ~~...~.-_----~.~-~~--~--____.b--~-----~.--~---» 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Pr 

Fig. 5 

XBL 802-8157 



50 

3.0 

JS = 27GeV 
2.0 

/S = 1000 GeV 

1.0 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Pr/ft 
Fig. 6 

XBL 802-8158 




